USE OF OCULOMOTOR TESTING AND THE KING DEVICK TEST IN CONCUSSION ASSESSMENT

2017 CATA Symposium
May 18, 2017
Anne Pacileo, PT
I have no financial interest/arrangement or affiliation with any organization that could be perceived as real or apparent conflicts of interest related to this presentation.
Clinical Presentations in Concussion

Adapted from Collins, et al, Knee Surgery, Sports Traumatology, Arthroscopy, Issue 2, pp 235-246

- Post Traumatic Migraine
- Vestibular
- Ocular
- Cervical/Orthopedic
- Cognitive/fatigue
- Anxiety/Mood

Concussion

Adapted from Collins, et al, Knee Surgery, Sports Traumatology, Arthroscopy, Issue 2
Why Assess the Vestibular-Ocular

• **Concussion can involve damage to**
 – Central (brain related) structures involved in balance and vision
 – Vestibular apparatus in the inner ear that can involve eye movements
 – Vestibular and/or vision issues can cause problems with balance

• **Vision accounts for 55% of the brain’s pathways.**
Subjective Complaints with concussion impacted by Vestibular-Ocular

• Dizziness, Fogginess, Feeling detached, Fatigue
• Motion discomfort, Nausea
• Intolerance to busy places
• Anxiety/Irritability
• Difficulty focusing, Blurred vision, Difficulty with Math/Reading
• Impaired balance
How do we balance?

Balance is controlled through signals to the brain from your eyes, the inner ear, and the sensory systems of the body (such as the skin, muscles, and joints). Changes in input from any of these sources can cause significant issues with balance, postural control and processing.
Purpose of the Vestibular System

• Sensory
 Perception of motion and orientation
 Angular acceleration
 Linear acceleration
 Position in relation to gravity

• Motor
 Control eye movement in order for images in surrounding environment remain clear
 Maintenance of equilibrium and desired posture
Organization of Vestibular System

- Visual Vestibular Proprioceptive
- Primary Processor (Vestibular Nuclear Complex)
- Adaptive Processor (Cerebellum)
- Motor Neurons

- Eye movements
- Positional Movements

References:
- Hain, TC, Helminski, J-Vestibular Rehabilitation, Heardman, SJ, 3rd edition, ed. 2007
VOR – Vestibulo-ocular reflex generates eye movements to stabilize gaze during head motion.

– Gain is the ratio of “output” (eye velocity) to input (head velocity) Ideally this number is 1.
Vestibular Ocular Reflex

VOR –

If the gain of the VOR is not 1 then head movement results in image motion on the retina, resulting in blurred vision.
Vestibular Ocular Reflex

1. Detection of rotation

2. Inhibition of extraocular muscles on one side.

2. Excitation of extraocular muscles on the other side

3. Compensating eye movement
Oscillopsia

MEDICAL INTELLIGENCE

LIVING WITHOUT A BALANCING MECHANISM

J. C.

BOSTON

ONE morning, now about four years ago, I ar-
anged in my pajama pocket toothpaste,
toothbrush, razor and shaving soap, mounted my
Classic Oculomotor Examination

• Ocular Motility/Alignment
• VOR testing
• Oculomotor tests

Tests central oculomotor pathways that are independent of the vestibular system.

– Smooth pursuit
– VOR cancellation
– Saccade Testing
– Vergence
• Head thrust/ Head impulse test
 – Positive test rules in – Normal test does not rule out.

• Dynamic Visual Acuity
 – Difference between static and visual acuity during 2 Hz oscillations
 – Use of Metronome ensures 120 cycles per second
 – 2 line or less difference is considered normal
EDTRS eye charts
Vestibular/Ocular Motor Screening (VOMS)

A Standardized Screening Examination
Vestibular/Ocular Motor Screening (VOMS)

- Developed by UPMC
- 64 subjects approximately age 14 and 78 controls were administered the screen including 5 domains.
- 61 percent of patients reported symptoms provocation after at least 1 VOMS item all VOMS items were positively correlated to the PCSS total symptoms score.
- The VOR and VMS components were most predictive of being in the concussed group.
- VOMS demonstrated internal consistency as well as sensitivity in identifying patients with concussion.

• In addition subjects were asked to complete the Post-Concussive Symptoms Scale (PCSS). This scale is used to measure concussion related symptoms. The scale consists of 22 self-reported symptoms items rated on a scale from 0 to 6. Total scores on the PCSS range from 0 to 132.

(Mucha et al, Am J Sports Med published online August 8, 2014)
Vestibular/Ocular Motor Screening (VOMS)

- 5-8 minute assessment to determine possible vestibular and/or non-vestibular causes of dizziness

- **Equipment needed**
 - Tape measure
 - Metronome
 - Target with 14 point font print

- **Assessment of 5 domains**
 - Smooth pursuits
 - Horizontal and vertical saccades
 - Convergence
 - Horizontal and vertical vestibular ocular reflex (VOR)
 - Visual motion sensitivity

Mucha et al, Am J Sports Med published online August 8, 2014
• As a baseline the patient rates on a scale of 0-10 symptoms of:
 – Headache
 – Dizziness
 – Nausea
 – fogginess

• Following each VOMS assessment the patients rates each of the 4 categories on a scale of 0-10.

UPMC Vestibular/Ocular Motor Screening Form (VOMS) for Concussion

<table>
<thead>
<tr>
<th>Vestibular Ocular-Motor Test:</th>
<th>Not Tested</th>
<th>Headache 0-10</th>
<th>Dizziness 0-10</th>
<th>Nausea 0-10</th>
<th>Fogginess 0-10</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE SYMPTOMS</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth Pursuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccades –Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccades- Vertical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergence (Near Point)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Near Point in cm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measurement 1: _______</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measurement 2: _______</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measurement 3: _______</td>
</tr>
<tr>
<td>VOR- Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR- Vertical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Motion Sensitivity Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mucha et al, Am J Sports Med published online August 8, 2014
VOMS-Smooth Pursuit

Assesses ability to follow slow moving target

- Target should be 3 feet from patient
- Horizontally 1.5 feet each direction/ Vertically 1.5 feet each direction- H pattern
- Diagonally (Upward/Outward)
- Hold at end range to assess behavior here
- Speed is 2 seconds in each direction
- Perform 2 complete repetitions

Mucha et al, Am J Sports Med published online August 8, 2014
Abnormal findings: Indicating a Central Issue

• Saccadic Correction
• Gaze evoked nystagmus
• Down beating nystagmus

Other considerations:

• Spontaneous and Gaze Evoked Nystagmus
 – Looking for presence of Nystagmus without movement of head
 – Have patient look straight ahead-Spontaneous Nystagmus
 – Look 30 degrees to right and left-Gaze Evoked Nystagmus
Tests ability of eyes to move quickly between targets

- Targets should be 3 feet from patient
- Horizontally 1.5 feet each direction (30° left/ 30° right)
- Vertically 1.5 feet each direction (30° upward / 30° downward)
- Instruct patient to move eyes as quickly as possible from one target to the next.
- Perform 10 repetitions-
 - One repetition is when eyes move back and forth to the starting point.
Abnormal findings indicating a Central Issue may be:

• Hypermetric- overshoot the target- Can indicate a cerebellar problem

• Hypo metric- under shoot the target- Commonly seen in concussion.
Measure the ability to view a near target without double vision.

- Examiner seated in front of patient
- Patient focuses on small target (14 point font) and starting at arms length brings the target towards the tip of their nose.
- Patient is instructed to stop moving the target when they see 2 distinct images or when examiner sees outward deviation of one eye.
- Distance in cm is measured between tip of the nose and the target.
- Abnormal if more than 6 cm. or eye unable to hold target
- Repeat 3 times

Mucha et al, Am J Sports Med published online August 8, 2014
Vestibular-Ocular Reflex Test

• Assesses ability to stabilize vision while the head moves

• Patient is instructed to rotate their head horizontally while maintaining focus on examiner’s finger.

• Head is moved 20° to each side

• Metronome is used to ensure speed is 180 beats per minute.

• One repetition is complete when head moves back and forth to the starting position. Perform 10 repetitions

• Repeat the test vertically

VOMS - Visual Motion Sensitivity
VOR Cancellation

Tests ability to inhibit Vestibular-Ocular Reflex and visual motion sensitivity

• Patient standing, feet shoulder width apart
• Patient holds arm outstretched and focuses on their thumb
• Patient is instructed to maintain focus on their thumb while they turn their head, eyes and trunk together as a unit.
• A metronome is used to ensure the speed is maintained at 50 BPM
• Rotate 80° to the right and 80° to the left.
• One repetition is complete when trunk rotates back and forth to the starting point. Perform 5 repetitions

VOMS - Interpretation

• Cutoff scores of 2 total symptoms after any VOMS item or an NPC distance of 6 cm resulted in high rates (96% and 84%, respectively) of identifying concussions.

• Moreover, a combination of VOR, VMS, and NPC distance scores (controlling for age) resulted in a positive prediction rate of 0.89 for identifying this injury.

• The VOMS appears to assess distinct vestibular and ocular motor symptoms, which are unrelated to current clinical balance measures.

• The VOMS may help clinicians to identify patients for vestibular and ocular referrals and more targeted treatment, thereby enhancing recovery from this injury.
King Devick Test

- **King-Devick Test** in association with Mayo Clinic is a validated, accurate and objective remove-from-play sideline concussion screening test. With results in less than two minutes, trained parents, coaches, athletic trainers, and medical professionals can quickly assess if an athlete requires additional medical attention.

- On the sidelines it has been used as a visual performance measure that incorporates eye movements and increases the sensitivity in detecting possible concussion in conjunction with standard sideline tests of cognition, symptom checklists and balance.

J Neurol Sci. 2016 Feb 15;361:79-86
King Devick Test

• Recommended for subjects older than 9

• Recommend a baseline testing score be obtained.

• Baseline testing should be completed twice.

• Baseline testing should be completed without errors

• For concussion screening test the subject once using the same number of cards used in the Baseline Testing
King Devick Test

- Subject holds test card at normal reading distance. If glasses are worn, it should be noted on test sheet.
- “You will be reading a series of numbers aloud as quickly as you can without making any mistakes.”
- Utilize the demonstration card and the arrows to show the direction the subject should read.
- The test cards are explained
 - Increasing difficulty
 - Cannot use fingers to follow
 - Questions
King Devick Test

- Tester instructs subject to go to test card 1.
- The tester starts the stopwatch when the subject reads the first number.
- The tester monitors and records any errors.
- The tester stops the stopwatch when the test card is complete.
- The subject then flips to the next test card, etc.
- The tester records the TOTAL TIME to complete all the test cards.
King Devick Test
King Devick Test
King Devick Test

• Youth league Rugby players
 – No witnessed concussion occurred during play.
 – 6 players recorded pre to post match changes with a mean delay of 4 s resulting in concussion subsequently confirmed post-match by health practitioners.

• College level football and basketball players
 – Showed worsening of K-D test score following concussion.
 – High test-retest reliability

Fischer TD et al J Neurotrauma 2016 Jul 1;33(13) 1237-46
Leong DF, et al J Optom 2015 Apr-Jun; 8 (2) 131-9
Anne Pacileo, PT
Site Supervisor, Gaylord Outpatient
Wallingford CT
203 294-3220
apacileo@gaylord.org
www.gayord.org
• King D, Hume P, Gissane C, Clark T. Use of the King Devick test for sideline concussion screening in junior rugby league. J Neurol Sci. 2015 Oct 15;357 (1-2) 75-9
• Sussman ES, HoAL, Pendharkar AV, Ghajar J. Clinical Evaluation of concussion: The evolving role of oculomotor assessments. Neurosurg Focus 2016 Apr; 40 (4)
• Ventura RE, Jancuska JM, Balcer LJ, Galetta SL. Diagnoctic tests for concussion: is vision part of the puzzle? J neuroophthalmol, 2015 Mar; 35 (1): 73-81
• Hain, TC, Helmsinski, J-Vestibular Rehabilitation, Heardman, SJ ,3RD edition, ed. 2007